Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Eur Radiol ; 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2242395

RESUMEN

OBJECTIVES: While chest radiograph (CXR) is the first-line imaging investigation in patients with respiratory symptoms, differentiating COVID-19 from other respiratory infections on CXR remains challenging. We developed and validated an AI system for COVID-19 detection on presenting CXR. METHODS: A deep learning model (RadGenX), trained on 168,850 CXRs, was validated on a large international test set of presenting CXRs of symptomatic patients from 9 study sites (US, Italy, and Hong Kong SAR) and 2 public datasets from the US and Europe. Performance was measured by area under the receiver operator characteristic curve (AUC). Bootstrapped simulations were performed to assess performance across a range of potential COVID-19 disease prevalence values (3.33 to 33.3%). Comparison against international radiologists was performed on an independent test set of 852 cases. RESULTS: RadGenX achieved an AUC of 0.89 on 4-fold cross-validation and an AUC of 0.79 (95%CI 0.78-0.80) on an independent test cohort of 5,894 patients. Delong's test showed statistical differences in model performance across patients from different regions (p < 0.01), disease severity (p < 0.001), gender (p < 0.001), and age (p = 0.03). Prevalence simulations showed the negative predictive value increases from 86.1% at 33.3% prevalence, to greater than 98.5% at any prevalence below 4.5%. Compared with radiologists, McNemar's test showed the model has higher sensitivity (p < 0.001) but lower specificity (p < 0.001). CONCLUSION: An AI model that predicts COVID-19 infection on CXR in symptomatic patients was validated on a large international cohort providing valuable context on testing and performance expectations for AI systems that perform COVID-19 prediction on CXR. KEY POINTS: • An AI model developed using CXRs to detect COVID-19 was validated in a large multi-center cohort of 5,894 patients from 9 prospectively recruited sites and 2 public datasets. • Differences in AI model performance were seen across region, disease severity, gender, and age. • Prevalence simulations on the international test set demonstrate the model's NPV is greater than 98.5% at any prevalence below 4.5%.

3.
Lancet Respir Med ; 9(5): 533-544, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1931217

RESUMEN

Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.


Asunto(s)
COVID-19/complicaciones , COVID-19/fisiopatología , Tos/etiología , Inflamación/etiología , Enfermedades del Sistema Nervioso/etiología , Neuroinmunomodulación , Tos/fisiopatología , Humanos , Inflamación/fisiopatología , Enfermedades del Sistema Nervioso/fisiopatología , SARS-CoV-2 , Síndrome
4.
Radiol Cardiothorac Imaging ; 2(1): e200034, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1155967

RESUMEN

PURPOSE: To present the findings of 21 coronavirus disease 2019 (COVID-19) cases from two Chinese centers with CT and chest radiographic findings, as well as follow-up imaging in five cases. MATERIALS AND METHODS: This was a retrospective study in Shenzhen and Hong Kong. Patients with COVID-19 infection were included. A systematic review of the published literature on radiologic features of COVID-19 infection was conducted. RESULTS: The predominant imaging pattern was of ground-glass opacification with occasional consolidation in the peripheries. Pleural effusions and lymphadenopathy were absent in all cases. Patients demonstrated evolution of the ground-glass opacities into consolidation and subsequent resolution of the airspace changes. Ground-glass and consolidative opacities visible on CT are sometimes undetectable on chest radiography, suggesting that CT is a more sensitive imaging modality for investigation. The systematic review identified four other studies confirming the findings of bilateral and peripheral ground glass with or without consolidation as the predominant finding at CT chest examinations. CONCLUSION: Pulmonary manifestation of COVID-19 infection is predominantly characterized by ground-glass opacification with occasional consolidation on CT. Radiographic findings in patients presenting in Shenzhen and Hong Kong are in keeping with four previous publications from other sites.© RSNA, 2020See editorial by Kay and Abbara in this issue.

5.
Lancet ; 395(10223): 514-523, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-20

RESUMEN

BACKGROUND: An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. METHODS: In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. FINDINGS: From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36-66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3-6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6-10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. INTERPRETATION: Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. FUNDING: The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).


Asunto(s)
Infecciones por Coronavirus/transmisión , Neumonía Viral/transmisión , Adulto , Anciano , Betacoronavirus/clasificación , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , China/epidemiología , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Salud de la Familia , Genoma Viral , Humanos , Persona de Mediana Edad , Filogenia , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Radiografía Torácica , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA